YASHWANT CLASSES

Head Office: Govind Vihar Tower, Behind Vaishali Cinema, Badlapur (W)

Date : 28-06-2022 **TEST ID: 114 Time** : 00:36:00 **PHYSICS**

Marks: 60

1.ROTATIONAL DYNAMICS, 7.SYSTEM OF PARTICLES AND ROTATIONAL MOTION

Single Correct Answer Type

- A ball of mass m moving with a velocity u collides head on with another ball of mass *m* initially at rest. If the coefficient of restitution be e then the ratio of the final and initial velocities of the first ball is
 - a) $\frac{1-e}{1+e}$ b) $\frac{1+e}{1-e}$ c) $\frac{1+e}{2}$ d) $\frac{1-e}{2}$
- A mass *m* is moving with a constant velocity along a line parallel to x-axis. Its angular momentum with respect to origin an z-axis is a) Zero b) Remains constant
- c) Goes on increasing d) Goes on decreasing 3. Particles of masses $m, 2m, 3m, \dots, nm$ grams are placed on the same line at distances $l, 2l, 3l, \dots, nl$ cm from a fixed point. The distance of centre of mass of the particles from the fixed point in centimeters is
 - a) $\frac{(2n+1)l}{3}$ b) $\frac{l}{n+1}$ c) $\frac{n(n^2+1)l}{2}$ d) $\frac{2l}{n(n^2+1)}$
- A bullet of mass *m* leaves a gun of mass *M* kept on a smooth horizontal surface. If the speed of the bullet relative to the gun is v, the recoil speed of the gun will be
- b) $\frac{m}{M+m}$, v d) $\frac{M}{m}v$

- A disc is rolling on the inclined plane, what is the ration of its rotational KE to the total KE? a) 1:3
- b) 3:1
- c) 1:2
- A rod of length *l* is hinged at one end and kept horizontal. It is allowed to fall. The velocity of the other end of the rod is
 - a) $\sqrt{3gl}$
- b) $\sqrt{2gl}$
- c) $2 Ml^2$
- d) None of these
- The radius of gyration of a thin uniform circular disc (of radius R) about an axis passing through its centre and lying in its plane is

- a) R
- b) $\frac{R}{\sqrt{2}}$ c) $\frac{R}{4}$
- A particle of mass *m* collides with another stationary particle of mass *M*. If the particle *m* stops just after collision, the coefficient of restitution of collision is equal to
 - a) 1

- c) $\frac{M-m}{M+m}$
- A particle of mass m moving with a velocity $(3\hat{i} + 2\hat{j})$ ms⁻¹ collides with a stationary body mass M and finally moves with a velocity
 - $(-2\hat{i} + \hat{j})$ ms⁻¹. If $\frac{m}{M} = \frac{1}{13}$, then
 - a) The impulse received by each is, $m(5\hat{i} + \hat{j})$
 - b) The velocity of the M is $\frac{1}{13}(5\hat{\imath} + \hat{\jmath})$
 - c) The coefficient of restitutions $\frac{11}{7}$
 - d) All the above are correct
- 10. Moment of inertia of a disc about an axis which is tangent and parallel to its plane is *I*. Then the moment of inertia of disc about a tangent, but perpendicular to its plane will be
 - a) $\frac{3I}{4}$ b) $\frac{5I}{6}$ c) $\frac{3I}{2}$ d) $\frac{6I}{5}$

Integer Answer Type

11. A ball of mass 1 kg moving with a velocity of 5 m/s collides elastically with rough ground at an angle θ with the vertical as shown in Fig. What can be the minimum coefficient of friction if ball rebounds vertically after collision? (giventan $\theta = 2$)

12. A uniform cylinder rests on a cart as shown. The coefficient of static friction between the cylinder and the cart is 0.5. If the cylinder is 4 CM in diameter and 10 CM in height, then what is the minimum acceleration (in m/s^2) of the cart needed to cause the cylinder to tip over?

13. A child of mass 4 kg jumps from cart B to cart A and then immediately back to cart B. The mass of each cart is 20 kg and they are initially at rest. In both the cases the child jumps at 6 m/s relative to the cart. If the cart moves along the same line with negligible friction with the final velocities of V_B and V_A , respectively, find the ratio of $6v_B$ and $5v_A$

14. A ball of mass m makes head-on elastic collision with a ball of mass nm which is initially at rest. Show that the fractional transfer of energy by the first ball is

- $4n/(1+n)^2$. Deduce the value of n for which the transfer is maximum
- 15. A disc of radius R is rolling purely on a flat horizontal surface, with a constant angular velocity. The angle between the velocity and acceleration vectors of point P is given by $\sin^{-1}(\sqrt{2}/n)$. What is the value of n?

YASHWANT CLASSES

Head Office: Govind Vihar Tower, Behind Vaishali Cinema, Badlapur (W)

 Date
 : 28-06-2022

 Time
 : 00:36:00

 TEST ID: 114

 PHYSICS

Marks : 60

1.ROTATIONAL DYNAMICS ,7.SYSTEM OF PARTICLES AND ROTATIONAL MOTION

: ANSWER KEY:								
1)	d	2)	b	3)	a	4)	b	
5)	a	6)	a	7)	d	8)	b	
9)	d	10)	d	11)	1	12)	4	
13)	1	14)	1	15)	2			

YASHWANT CLASSES

Head Office: Govind Vihar Tower, Behind Vaishali Cinema, Badlapur (W)

 Date
 : 28-06-2022

 Time
 : 00:36:00

 TEST ID: 114

 PHYSICS

Marks: 60

1.ROTATIONAL DYNAMICS, 7.SYSTEM OF PARTICLES AND ROTATIONAL MOTION

: HINTS AND SOLUTIONS :

Single Correct Answer Type

1 (d)

Here
$$m_1 = m_2 = m$$
, $u_1 = u$ and $u_2 = 0$

$$v_1 = u_1 \frac{(m_1 - em_2)}{(m_1 + m_2)} + u_2 \frac{(1 + e)m_2}{(m_1 + m_2)}$$

$$= \frac{u(1 - e)}{2}$$

$$\Rightarrow \frac{v_1}{u} = \left(\frac{1-e}{2}\right)$$

2 **(b**)

Angular moment of particle w.r.t., origin =linear momentum×perpendicular distance of line of action of linear momentum from origin

 $= mv \times a = mva = constant$

$$x_{CM} = \frac{m_1 x_1 + m_2 + x_2 + \cdots}{m_1 + m_2 + \cdots}$$

$$= \frac{ml + 2m \cdot 2l + 3m \cdot 3l + \cdots}{m + 2m + 3m + \cdots}$$

$$= \frac{ml(1 + 4 + 9 + \cdots)}{m(1 + 2 + 3 + \cdots)} = \frac{\frac{l n(n+1)(2n+1)}{6}}{\frac{n(n+1)}{2}}$$

$$= \frac{l(2n+1)}{3}$$

4 **(b)**

Speed of the bullet relative to ground $\vec{\mathbf{v}}_b = \vec{\mathbf{v}} + \vec{\mathbf{v}}_r$, where v_r is recoil velocity of gun. Now for gunbullet system applying the conservation law of momentum, we get

$$m\vec{\mathbf{v}}_b + M\vec{\mathbf{v}}_r = 0 \text{ or } m(\vec{\mathbf{v}} + \vec{\mathbf{v}}_r) + M\vec{\mathbf{v}}_r = 0$$

$$\Rightarrow \vec{\mathbf{v}}_r = -\frac{m\vec{\mathbf{v}}}{m+M} \text{ or } v_r = \frac{mv}{m+M}$$

5 **(a)**

The rotational kinetic energy of the disc is

$$K_{\rm rot} = \frac{1}{2}I\omega^2 = \frac{1}{2}(\frac{1}{2}MR^2)\omega^2 =$$

$$\frac{1}{4}MR^2\omega^2$$

The translational kinetic energy is

$$K_{\rm trans} = \frac{1}{2} M v_{\rm CM}^2$$

where $v_{\rm CM}$ is the linear velocity of its centre of mass.

Now,
$$v_{\rm CM} = R\omega$$

Therefore,
$$K_{\text{trans}} = \frac{1}{2}MR^2\omega^2$$

Thus,
$$K_{\text{total}} = \frac{1}{4}MR^2\omega^2 + \frac{1}{2}MR^2\omega^2 = \frac{3}{4}MR^2\omega^2$$

$$\frac{K_{\text{rot}}}{K_{\text{total}}} = \frac{\frac{1}{4}MR^2\omega^2}{\frac{3}{4}MR^2\omega^2} = \frac{1}{3}$$

6 **(a)**

As the mass is concentrated at the centre of the rod, therefore,

$$mg \times \frac{l}{2} = \frac{1}{2}I\omega^2 = \frac{1}{2}\left(\frac{ml^2}{3}\right)\omega^2$$

or
$$l^2\omega^2 = 3gl$$

Velocity of other end of the rod

$$v = l\omega = \sqrt{3gl}$$

8 **(b**)

As net horizontal force acting on the system is zero, hence momentum must remain conserved. Hence

$$mu + 0 = 0 + mv_2 \Rightarrow v_2 = \frac{mu}{M}$$

As per definition,

$$e = -\frac{(v_1 - v_2)}{(u_2 - u_1)} = \frac{v_2 - 0}{o - u} = \frac{v_2}{u} = \frac{\frac{mu}{M}}{u} = \frac{m}{M}$$

) (d

(a) Impulsive received by m

$$\vec{J} = m(\vec{v}_f - \vec{v}_i)$$

= $m(-2\hat{i} + \hat{j} - 3\hat{i} - 2\hat{j})$

$$= m(-5\hat{\imath} - \hat{\jmath})$$

And impulse received by M

$$= -\vec{\mathbf{J}} = m(5\hat{\mathbf{i}} + \hat{\mathbf{j}})$$

(b)
$$mv = m(5\hat{i} + \hat{j})$$

Or
$$v = \frac{m}{M}(5\hat{i} + \hat{j}) = \frac{1}{13}(5\hat{i} + \hat{j})$$

(c) e = (relative velocity of separation/relative)velocity of approach) in the direction of $-\vec{l} =$ 11/17

10 (d)

The moment of inertia of the disc about an axis parallel to its plane is

$$I_t = I_d + MR^2$$

$$I = \frac{1}{4}MR^2 + MR^2$$

$$= \frac{5}{4}MR^2$$

or
$$MR^2 = \frac{4I}{5}$$

Now, moment of inertia about a tangent perpendicular to its plane is

$$I' = \frac{3}{2}MR^2 = \frac{3}{2} \times \frac{4}{5}I = \frac{6}{5}I$$

Integer Answer Type

11 (1)

From impulse-momentum theorem,

$$\int N \, dt = m(v + 5\cos\theta) \quad (i)$$

$$\int f dt = m5 \sin \theta$$

$$\mu \int N dt = m5 \sin \theta$$
 (ii)

$$\Rightarrow \mu m(v + 5\cos\theta) = m5\sin\theta$$

According to Newton's law of restitution,

$$v = e 5 \cos \theta$$

Solve to get $\mu = 1$

12 **(4)**

Maximum acceleration of the cart so that the cylinder does not slip:

$$a_m = \mu g = 0.5 \times 10 = 5 \text{ m/s}^2$$

For tipping over. Let acceleration of the cart be *a*

Considering torque about A, we get

$$ma \times 5 \ge mg \times 2 \Rightarrow 2g/5 = 4 \text{ m/s}^2$$

13

All the velocities shown in diagrams are w.r.t. ground

After first jump:

 $20v_1 = 4v_2$ and $v_1 + v_2 = 6$ (given) Solve to get $v_1 = 1 \text{ m/s}, v_2 = 5 \text{ m/s}$ When child arrives on A:

$$-v_3$$
 \xrightarrow{A} \xrightarrow{B} $\longrightarrow v_1$

 $(20 + 4)v_3 = 4v_2 \Rightarrow v_3 = 5/6 \text{ m/s}$ After the second jump:

 $v_4 + v_A = 6,24v_3 = 20v_A - 4v_4$

Solve to get $v_A = \frac{11}{6}$ m/s, $v_4 = \frac{25}{6}$ m/s

When child arrives on B:

$$v_A \longrightarrow V_B$$

 $24v_B = 4v_4 + 20v_1$

$$\Rightarrow 24v_B = 4\left(\frac{25}{6}\right) + 20 \times 1 \Rightarrow v_B = \frac{55}{36} \text{ m/s}$$

Now $\frac{6v_B}{5v_A} = \frac{6 \times 55 \times 6}{36 \times 5 \times 11} = 1$

14 **(1)**

Let u be the initial velocity of the ball of mass m.

$$mu = mv_1 + nmv_2 \Rightarrow v_1 + nv_2 = u \quad (i)$$

For elastic collision, Newton's experimental formula is $(u_2 = 0)$

formula is
$$(u_2 = 0)$$

$$v_1 - v_2 = -(u_1 - u_2) \Rightarrow v_1 - v_2 = -u$$
 (ii)

Solving Eqs. (i) and (ii), $v_1 = \frac{1-n}{1+n}u$

Fractional loss in KE (= fractional transfer of KE)

$$f = \frac{K_i - K_f}{K_i} - \frac{\frac{1}{2}mu^2 - \frac{1}{2}mv_1^2}{\frac{1}{2}mu^2} = 1 - \left(\frac{v_1}{u}\right)^2$$

$$f = 1 - \left(\frac{1-n}{1+n}\right)^2 = \frac{4n}{(n+1)^2}$$
 The transfer of energy is maximum when $f = 1$

or 100%

$$\frac{4n}{(n+1)^2} = 1 \Rightarrow n = 1$$

This is, the transfer of energy is maximum when $% \left\{ 1,2,...,n\right\}$ the mass ratio is unity

15 **(2)**

The required angle is 45°, so $\frac{\sqrt{2}}{n} = \frac{1}{\sqrt{2}} \Rightarrow n = 2$