

YASHWANT CLASSES

Head Office: Govind Vihar Tower, Behind Vaishali Cinema, Badlapur (W)

Date : 06-07-2022 Time : 00:24:00

Marks: 40

TEST ID: 130 MATHEMATICS

10.STRAIGHT LINES, 4.PAIR OF STRAIGHT LINES, 5.STRAIGHT LINES

Single Correct Answer Type

- The distance between the lines 5x 12y +65 = 0 and 5x - 12y - 39 = 0 is
 - a) 4
- b) 16
- c) 2
- d) 8
- The determinant $\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$ represents 2.
 - a) A pair of straight lines
 - b) A straight line
 - c) A circle
 - d) None of these
- The lines $x \cos \alpha + y \sin \alpha = p_1$ and $x \cos \beta + y \sin \beta = p_2$ will be perpendicular, if
 - a) $\alpha \pm \beta = \frac{\pi}{2}$
- b) $\alpha = \frac{\pi}{2}$
- c) $|\alpha \beta| = \frac{\pi}{2}$
- d) $\alpha = \beta$
- The parallelism condition for two straight lines one of which is specified by the equation ax +by + c = 0 and the other being represented parametrically by $x = \alpha t + \beta$, $y = \gamma t + \delta$, is given by
 - a) $\alpha \gamma + b\alpha = 0$, $\beta = \delta = c = 0$
 - b) $a\alpha b\gamma = 0$, $\beta = \delta = 0$
 - c) $a\alpha + b\gamma = 0$
 - d) $ay = b\alpha = 0$
- 5. The equation of the bisector of the acute angle between the line 3x - 4y + 7 = 0 and 12x +5v - 2 = 0 is
 - a) 99x 27y 81 = 0 b) 11x 3y + 9 = 0
- The equation $x^2 + kxy + y^2 5x 7y + 6 =$ 6.

- 0 represents a pair of straight lines, then *k* is
- a) 5/3
- b) 10/3
- c) 3/2
- d) 3/10
- 7. The locus of the mid-point of the portion intercepted between the axes by the line $x \cos \alpha + y \sin \alpha = p$, where p is a constant is

a)
$$x^2 + y^2 = 4 p^2$$

a)
$$x^2 + y^2 = 4p^2$$

b) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$
c) $x^2 + y^2 = \frac{4}{p^2}$
d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$

c)
$$x^2 + y^2 = \frac{4}{p^2}$$

d)
$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$$

Points on the line y = x whose perpendicular distance from the line 3x + 4y = 12 are 4 have the coordinates

a)
$$\left(-\frac{8}{7}, -\frac{8}{7}\right), \left(-\frac{32}{7}, -\frac{32}{7}\right)$$

b)
$$\left(\frac{8}{7}, \frac{8}{7}\right)$$
, $\left(\frac{32}{7}, \frac{32}{7}\right)$

c)
$$\left(-\frac{8}{7}, -\frac{8}{7}\right), \left(\frac{32}{7}, \frac{32}{7}\right)$$

- d) None of these
- If x_1, x_2, x_3 as well as y_1, y_2, y_3 are in GP with the same common ratio, then the points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3)
 - a) Lie on a parabola
 - b) Lie on an ellipse
 - c) Lie on a circle
 - d) Lie on a straight line
- 10. Let ABC be an isosceles triangle with AB = BC. If base BC is parallel to x-axis and m_1 and m_2 are the slopes of medians drawn through the angular points B and C, then
 - a) $m_1 m_2 = -1$
- b) $m_1 + m_2 = 0$
- c) $m_1 m_2 = 2$
- d) $m_1 + 2m_2 = 0$